

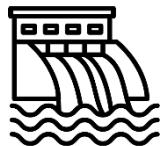
### P1.6.3 Energy Resources

#### How energy can be obtained:

- **Fossil fuels** (coal, oil, gas) – Non-renewable, release CO<sub>2</sub> (linked to global warming / climate change).

Burned in a boiler → makes steam → turns a turbine → turbine drives a generator → electricity.



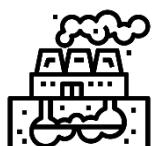

- **Biofuels** (wood, plant oils, animal waste) - Renewable *if* crops are replanted. Will also release CO<sub>2</sub>

Burned like fossil fuels to heat water in a boiler → steam → turbine → generator.



- **Water resources** - Renewable, no fuel needed. No pollution.

Hydroelectric dam: falling water turns turbines → generator.




Tides: moving tides turn turbines.

Waves: moving waves drive turbines.

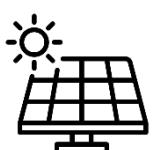
- **Geothermal** - Renewable, but only possible in some places (e.g. volcanic areas).

Heat from underground hot rocks produces steam → turbine → generator.



- **Nuclear fission**

Splitting uranium nuclei in a reactor releases heat → heats water in a boiler → steam → turbine → generator.


Very powerful, no CO<sub>2</sub> pollution, but produces radioactive waste.

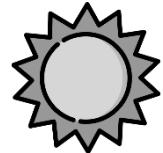


- **Solar energy** - Renewable, no pollution, but depends on the weather.

Solar cells (photovoltaic): sunlight directly makes electricity.

Solar thermal collectors: infrared radiation heats water in pipes.




- **Wind** - Renewable, no pollution, but depends on wind speed.

Wind blows large blades → turns turbine → generator makes electricity.



## Main sources of energy on Earth

**The Sun** is the main source for most resources (fossil fuels, biofuels, wind, waves, hydroelectric, solar) but NOT for Geothermal (heat from Earth), Nuclear (fission), or Tidal (tides depend on Moon's gravity).



## Nuclear processes

- **Fusion in the Sun:** energy released when hydrogen nuclei *join* together to form helium.
- **Fission in reactors:** energy released when uranium nuclei *split*.

## Efficiency

- Efficiency shows how much **input** energy is turned into useful **output**.
- Formula to remember:
  - Efficiency =  $(\text{useful energy output} \div \text{total energy input}) \times 100\%$
  - Efficiency =  $(\text{useful power output} \div \text{total power input}) \times 100\%$
- Efficiency is always **less than 100%** because some energy is wasted (usually as heat or sound).